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Abstract

A key issue in heavy-ion beam inertial confinement fusion is target interaction, especially implo-

sion symmetry. In this paper the 2D beam irradiation nonuniformity on the surface of a spherical

target is studied. This is a first step to studies of 3D dynamical effects on target implosion. So

far non-rotated beams have been studied. Because normal incidence may increase Rayleigh-Taylor

instabilities, it has been suggested to rotate beams (to increase average uniformity) and hit the

target tangentially. The level of beam irradiation uniformity, beam spill and normal incidence is

calculated in this paper. In Mathematica the rotated beams are modelled as an annular integrated

Gaussian beam. To simplify the chamber geometry, the illumination scheme is not a 4π system,

but the beams are arranged on few polar rings around the target. The position of the beam spot

rings is efficiently optimized using the analytical model. The number of rings and beams, rotation

radii and widths are studied to optimize uniformity and spilled intensity. The results demonstrate

that for a 60-beam system on four rings Peak-To-Valley nonuniformities of under 0.5% are possible.
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I. INTRODUCTION

In inertial confinement fusion (ICF) heavy-ion beams (HIB) are used to generate a high

energy density state [1–3]. A key issue is HIB-target interaction, especially implosion sym-

metry [4–6]. In this paper the beam irradiation nonuniformity on the surface of a spherical

target is studied. This is a first step to studies of 3D dynamical effects on target implosion.

Beam nonuniformities have so far been studied in the case of non-rotated beams [7, 8]. Their

normal incidence leads to a growth of Rayleigh-Taylor instabilities [9, 10] and it has therefore

been suggested offsetting the whole beam from its normal axis (the line running from final

lens to nominal aiming point) by a displacement that is rotated rapidly about the axis. Then

less intensity would hit the target normally and one could benefit from oblique/tangential

incidence. Wobblers [3, 11, 12] can rotate ion beams with high frequency. The oscillatory

effect of the rotation is also assumed to mitigate the growth of instabilities [13].

Due to the high rotation frequency the ion beams in this paper are idealized as hollow

beams, i.e. the rotation is integrated. In Mathematica [15] the rotated beams are modelled

as a Gaussian beam with its center being rotated around a circle and the intensity aver-

aged over the rotation. The circle radius is manipulated by the wobbler amplitude. The

beams are arranged on polar rings around the target. The position of the beam spot rings

is efficiently optimized to reduce nonuniformities using the analytical model. In various cal-

culations the optimal number of rings and beams, their rotation radii and Gaussian widths

are investigated.

In this examination the beam is modelled as a Gaussian distributed intensity, not as

many incident ions. Therefore optimized uniformity refers to the irradiation uniformity on

the target surface, not the volumetric energy deposition uniformity in the target layers caused

by stopped ions. Optimizing the irradiation nonuniformity is believed to be an important

first step. Further 3D studies that simulate incident ion particles and their energy deposition

will have to take into account the shortening of deposition range for tangentially incident

ions.

The paper is organized as follows. The first section will explain the simulation model and

assumptions. The second section will give the calculation methods and numerical approxi-

mations. Then the results are presented and discussed.
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II. SIMULATION MODEL

To simplify the chamber geometry, the beams are not equally distributed on 4π around

the target, but rather on polar rings. This makes it easier to connect the accelerator to

the target chamber. In a power plant the polar axis in Fig. 1 may be horizontal and the

accelerated beams arrive from both sides with the beams bent towards the target. The

beams are aimed radially so that the bending angle does not change once the target shrinks

during the implosion. Then the rotation radius (wobbler amplitude) can be adjusted to the

shrinking target (zooming). The intensity is calculated as the sum of rotated Gaussians

from beam spots in Fig. 1 shown as cylinders for the case of four rings. The two rings near

the poles have beam positions that are offset to the equatorial rings. This has been tested

to reduce maximum deviations.

The rotated Gaussian beam is modelled as follows (Fig. 2). The center (x0 = a cos φ0

and y0 = a sin φ0 in polar coordinates) of a 2D Gaussian beam e−
(x−x0)2+(y−y0)2

2s2 is integrated

over a circle with radius a (wobbler rotation radius). The intensity E is given by:

E =

∫ 2π

0

e−
(x−a cos(φ0))2+(y−a sin(φ0))2

2s2 dφ0 (1)

where a is the rotation radius, s is the Gaussian width and x and y are cartesian coordinates

with origin at the center around which the beam is rotated. Going over to polar coordinates

x = r cos φ and y = r sin φ the integral becomes

E = e−
a2+r2

2s2

∫ 2π

0

e
a·r cos(φ+φ0)

s2 dφ0 (2)

= e−
a2+r2

2s2 · 2πI0

(a · r
s2

)
(3)

which yields the modified Bessel Function of the first kind of order zero with no φ-dependence

[14].

This is the emitted beam intensity. To calculate the intensity deposition of one single

rotated beam on the spherical target this intensity is multiplied by a Cosine factor cos(θ)

to account for weaker intensity due to tangential incidence at the edges of the target. Fur-

thermore a Heaviside-Theta function Θ(R cos θ) cuts off intensity beyond the target radius

R = 1 and the rest will be spilled intensity. The resulting intensity on the target is then

(without the unimportant prefactor):

E = e−
a2+r2

2s2 I0

(a · r
s2

)
· cos(θ) ·Θ(R cos θ) (4)
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The coordinates used here are in the local coordinate system for every beam (Fig. 2). The

coordinate r is to be understood as the radius in a tangential plane attached at the point

where the center of the rotated beam hits the target. Whereas the coordinate θ is the polar

angle from the spherical coordinate system of the target with θ = 0 being the point where

the center of the rotated beam hits the target and θ = π
2

the point where the beam hits the

edge of the target sphere. In the calculation, for every beam the tangential plane is moved

to the location of the center of the rotated beam, tangent to the target, and the intensity is

then given as above in local coordinates. The total intensity is then given by the sum over

all beams E = En,m, each with ring number m and beam number n.

E(θ, φ) =

Nrings∑
m=1

Nbeams∑
n=1

En,m (5)

Now the new coordinates (0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π) are in the global spherical coordinate

system of the target surface. Nrings is the number of rings and Nbeams the number of beams

on one ring.

The advantage of this rotated beam is its oblique incidence on the target. Fig. 3 compares

the degree of normal incidence for a rotated and a non-rotated beam for a normalized

deposition energy and the same percentage of spill. The intensity is shown in a polar plot

with the beam coming from the top. The dotted beam represents a non-rotated Gaussian

beam. The normal incidence for the rotated beam is significantly reduced. But a smaller

beam width is necessary.

III. CALCULATION METHOD

In ICF the beam irradiation nonuniformity on the fuel target must be suppressed under

a few percent in order to achieve a symmetric fuel pellet implosion. Here the rms and

Peak-to-Valley (PTV) nonuniformity are employed. The latter is defined as follows:

PTV =
EMax − EMin

2〈E〉 (6)

where 〈E〉 is the mean intensity, calculated numerically in polar coordinates as the sum of

all beams (cut off beyond the target radius R) divided by 4πR2.
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The maximum and minimum value are calculated on a mesh using a 1 degree resolu-

tion. The rms nonuniformity is calculated using the Mathematica function NIntegrate with

a multiperiodic strategy which gives optimal convergence for analytic periodic integrands

when the integration interval is exactly one period. Furthermore the unspilled intensity is

calculated as the quotient of
∫ R

0
e−

a2+r2

2s2 I0

(
ar
s2

)
dr/

∫∞
0

e−
a2+r2

2s2 I0

(
ar
s2

)
dr. The target radius

is R = 1. The position of the beam spot rings (angles α and β in Fig. 1) is optimized using

the Mathematica function NMinimize, minimizing the root of the deviations of the mean

to the 6th power for just three points. This was found to be sufficient when the points are

carefully chosen.

Additionally the optimal parameter configurations are analyzed in modes sm
n of Spherical

Harmonics Y m
n :

sm
n =

∫ 2π

0

∫ π

0

E(θ, φ)Y m
n (θ, φ)R2 sin θ dθdφ (7)

Again, the integration is carried out using the Mathematica function NIntegrate with a

multiperiodic strategy.

IV. RESULTS

At first, the question of how many rings and beams are necessary is addressed. Fig.

6 shows that a scheme with just two rings it not enough to provide low nonuniformities.

Furthermore 10 beams (40 total) on four rings are not much different from 20 beams per

ring or more rings. So 10 beams per ring on four rings seems to be enough. Obviously

more than four rings reduce nonuniformities further, but four rings are enough to reduce

the nonuniformity below 1%. The case studied further in this paper deals with 15 beams

per ring (60 total). The optimized angles are very similar for the 40 and 60 beam scheme.

For two configurations (both 60 beams, {a = 0.51, s = 0.4} and {a = 0.55, s = 0.3}) the

intensity deposition on the target sphere is shown in Fig. 4 and Fig. 5. The nonuniformities

are exaggerated five-fold and show smooth maxima and minima. For both cases a PTV

nonuniformity of under 0.8% and a rms nonuniformity of under 1.2% are achieved.

Fig. 7 shows the PTV nonuniformities and Fig. 8 the rms nonuniformities for the 60

beam scheme for different rotation radii and beam widths. The spill mentioned in the legend

increases almost linearly from rotation radius a = 0.4 to a = 0.6. The rotation radius shown
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here varies between a = 0.4 –as there are no minima before and the normal incidence is

too high– and a = 0.6 as then the spilled intensity reaches more than 25% even for small

widths. For a width more than s = 0.4 the minimum appears at a radius with more than

20% waste which is undesirable. The aim is to use a big rotation radius as this reduces

normal incidence and still keep the spilled intensity below about 20%.

The minima in rms and PTV nonuniformity occur at slighlty different radii, especially

for larger widths. Table I lists the minima in PTV and rms for various widths and the

optimized angles. The explanation for two minima occuring for smaller radii is the following

(Fig. 9): Looking at a polar cut (0 ≤ θ ≤ π) the first minimum appears when the radius is

so that the crests of the four beams do not overlap much. The second minima appears when

they overlap with the crest of one beam filling the ”hole” in the center of the next beam.

The absolute minimum in both PTV and rms were found for a width s = 0.34 and radius

a = 0.45 (PTV= 0.3% and rms= 0.33%), but slighty greater nonuniformities are reached

for a desireably bigger rotation radius for other widths.

For every set of beam parameters the angles of the beam spot rings were optimized for

least deviation from the mean. Small deviations of about one degree from the ideal angle

will double or more the nonuniformity.

For two cases (s = 0.4 and s = 0.3) and their optimal radius the energy deposition is

analyzed in Spherical Harmonics. The energy deposition is almost azimuthal symmetric (as

can be expected from a scheme with 15 beams in φ-direction, but only four rings; for 10

beams per ring the situation would be different), the deviations in φ-direction are only about

a tenth of the deviations in θ-direction. Fig. 10 and Fig. 11 show the absolute amplitudes

of modes for the two cases. Due to the symmetry about the equator the odd modes in n

are zero. The offset of the polar to the equatorial ring leads to an effective even number

of beams in azimuthal direction causing the odd m-modes to vanish. The dominant (0,0)

mode is normalized to 1. The m 6= 0 modes are orders of magnitude smaller due to the high

symmetry. These high mode nonuniformities will smooth out due to radiation transport [3].

V. CONCLUSION

The aim of this paper was to study the irradiation nonuniformity for the case of ro-

tated beams in HIF. The results give an overview of irradiation nonuniformities that finally
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cause Rayleigh-Taylor instabilities. The calculated parameters are a guideline for further

3D implosion studies.

The results show that low nonuniformities are accessible using rotated beams for an

economical four polar ring scheme with 40 - 60 beams. The nonuniformity depends on the

beam width. For each width there exist one or more minima in nonuniformity when the

rotation radius is changed. The bigger the radius the less normal incidence. For widths more

than s = 0.5 in units of target radius (eg 1mm for a 4mm diameter target) the minimum

has too much spill though and smaller widths are desireable.

The oscillatory effect of a rotated beam is also believed to have a stabilizing effect on RT

growth [13].
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TABLE I: Minima in PTV for various parameters; width and radius are in units of target

radius; PTV, rms and spill are in %; α and β are in degrees.

Width s Radius a PTV rms Spill α β

0.30 0.42 1.1 1.38 4.45 78.7320 37.5489

0.55 0.7 0.99 9.76 68.5505 43.1670

0.32 0.44 0.4 1.03 6.60 78.7280 37.5032

0.56 0.6 0.79 12.35 69.2377 42.6234

0.34 0.45 0.3 0.33 8.70 79.2266 37.3975

0.57 0.9 0.92 15.04 69.6181 42.3236

0.36 0.47 0.3 0.45 11.45 79.4527 37.3224

0.58 1.2 1.11 17.77 70.1234 41.9323

0.38 0.49 0.5 0.73 14.42 79.7292 37.2332

0.59 1.3 1.21 19.83 70.5238 41.6483

0.40 0.51 0.6 1.18 17.52 80.3463 37.0715

0.42 0.55 0.7 1.13 21.91 81.1061 36.8236

0.44 0.57 1.0 1.71 25.13 82.8523 36.4239
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FIG. 1: Illumination scheme with four rings; the beam spots are arranged all around the

polar rings.

FIG. 2: One beam with Gaussian profile is rotated with rotation radius a over the circle

from φ = 0 to 2π; r and φ are local coordinates (for every beam) in the plane attached to

the target surface; θ is a coordinate in the target system (with origin at the center of the

target).

FIG. 3: Polar plot of beam intensity for rotated and non-rotated beams (a = 0, a Gaussian

beam that hits the target normally), intensity is proportional to distance from origin at

given angle θ; both beams are normalized and have the same spill; the arrows indicate the

incidence of the beam; parameters are {s = 0.3, a = 0.55} for the rotated and s = 0.464 for

the non-rotated beam.

FIG. 4: Intensity deposition on target sphere for a four ring scheme with 15 beam spots

per ring and beam parameters s = 0.3 and a = 0.55, deviations of the mean are

exaggerated 5-fold.

FIG. 5: Intensity deposition on target sphere for a four ring scheme with 15 beam spots

per ring and beam parameters s = 0.4 and a = 0.51, deviations of the mean are

exaggerated 5-fold.

FIG. 6: Peak-To-Valley deviation for various beam spot schemes. ”60 on 2” means just

two rings with 30 beams per ring.

FIG. 7: Peak-To-Valley deviation for four different beam widths; the percentages in the

legend are the spill for small and big radii.
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FIG. 8: rms deviation for four different beam widths; the percentages in the legend are the

spill for small and big radii.

FIG. 9: Explanation for the two minima occuring for a width of s = 0.3; the left figure

shows the minimum at a smaller rotation radius a = 0.42, where the crests of the beams do

not overlap much; the right figure shows the minimum for the bigger rotation radius

a = 0.55 where the crest of one beam fills in the ”hole” of the next beam.

FIG. 10: Mode analysis for the s = 0.3 and a = 0.55 case; the zeroth mode is 1 and not

shown.

FIG. 11: Mode analysis for the s = 0.4 and a = 0.51 case; the zeroth mode is 1 and not

shown.
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